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The statistical spectral theory of oscillations in a quasioptical cavity resonator filled with random inhomo-
geneities is suggested. It is shown that inhomogeneities in the resonator lead to intermode scattering which
results in the shift and broadening of spectral lines. The shift and the broadening of each spectral line is
strongly depended upon the frequency distance between the nearest-neighbor spectral lines. As this distance
increases, the influence of inhomogeneities is sharply reduced. Solitary spectral lines that have quite a large
distance to the nearest neighbors are slightly changed due to small inhomogeneities. Owing to such a selective
influence of inhomogeneities on spectral lines the effective spectrum rarefaction arises. Both the shift and the
broadening of spectral lines as well as spectrum rarefaction in the quasioptical cavity millimeter wave reso-
nator were detected experimentally. We have found out that inhomogeneities result in the resonator spectrum
stochastization. As a result, the spectrum becomes composite, i.e., it consists of both regular and random parts.
The active self-excited system based on the inhomogeneous quasioptical cavity millimeter wave resonator with
a Gunn diode was examined as well. The inhomogeneous quasioptical cavity millimeter wave resonator
�passive and active� can serve as a model of a semiconductor quantum billiard. Based on our results we
propose that such a billiard with the spectrum rarefied by random inhomogeneities be used as an active
semiconductor laser system.
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I. INTRODUCTION

The electromagnetic wave propagation in random inho-
mogeneous media has been the issue of the day for several
decades. Numerous publications are devoted to the analysis
of different aspects of this problem �see Refs. �1,2� and ref-
erences therein�. In this scientific area the subject of research
is normally the scattering of electromagnetic �acoustic�
waves in unbounded or partially confined systems �for ex-
ample, in waveguides� which contain random inhomogene-
ities. Researches on wave propagation in open statistically
irregular systems are stimulated by numerous applications
for long-distance signal transmission in both radio and
optical wave ranges.

At present the electromagnetic oscillations in confined
resonant systems with random inhomogeneities, in particular,
quasioptical microwave resonators, are also under study. Up
to date, however, the satisfactory solution to this problem
was not found both in theoretically and experimentally. On
the one hand, the well-elaborated theories of wave propaga-
tion in disordered media use the statistical isotropy and the
scattering potential homogeneity conditions �1,2�, which ba-
sically cannot be implemented for confined systems. On the
other hand, the random matrix theory �RMT� that is com-
monly used to analyze the confined systems �3,4� also has
significant limitations. For RMT application it is necessary to
express the Hamiltonian of the system in terms of a matrix
whose all elements are random. Such a matrix can belong,
for instance, to the ensemble of Gaussian orthogonal matri-
ces �GOE�. In this case matrix elements are real, symmetrical
to the time inversion, and invariant to orthogonal transforma-
tions. The system with such a Hamiltonian is not integrable

and the motion in it is completely chaotic. The examples of
the completely chaotic systems are microwave resonators
similar to the Sinai and Bunimovich billiards. Their chaotic
spectra are well described by RMT �4–6�. The quasioptical
cavity resonator even with small random inhomogeneities
being considered in the present paper belongs to neither an
integrable system nor a completely chaotic one. In this sys-
tem we found that by inserting the inhomogeneities into the
resonator its spectrum becomes mixed, i.e., it contains both
regular and chaotic components simultaneously. Therefore,
strictly speaking, to study the spectrum we cannot use the
RMT approach �4� so we need a different one. Experimental
study of electromagnetic oscillations spectrum in a quasi-
optical cavity resonator filled with inhomogeneities also re-
quires new techniques at wide frequency range, including
millimeter waves.

In our recent paper �7� we suggested a new spectral ap-
proach to studying confined systems with random inhomoge-
neities. Spectral properties of spherical quasi-optical milli-
meter wave cavity resonator filled with random sapphire
particles were considered in the above-mentioned paper. The
sapphire particles having dimensions of the order of an op-
erating wavelength affect significantly the resonator spec-
trum. The spherical frequency degeneracy is completely re-
moved and the spectral lines have the chaotic distribution on
a frequency axis. The lines became wider and the quality
factor was correspondingly decreased. The analogous broad-
ening of spectral lines caused by random inhomogeneities
has been detected in Refs. �8,9�, where the resonators with
random rough boundaries were studied.

Recently, the influence of random inhomogeneities on the
resonator spectrum has attracted a great deal of attention in
connection with the design of lasers on open microresonators
�10�. In such resonators, the whispering-gallery modes with
superhigh quality factors can be excited. The possibility to*Electronic address: zoya@ic.kharkov.ua
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realize these quality factors strongly depends on the amount
of inhomogeneities.

The cavity resonator with small dissipation loss is an al-
most Hermitian system whose oscillations are set up due to
the restricted motion of electromagnetic waves. Upon intro-
ducing random elastically scattering inhomogeneities into
the bulk of the resonator its spectrum should remain almost
discrete, with an accuracy governed by the level of dissipa-
tion. However, as it was detected in the experiment �7�, the
broadening of spectral lines in a randomly filled resonator
can go far beyond the value prescribed by the ohmic loss in
the system. In this context a question arises: what is the
overriding physical mechanism for spectral lines broadening
and spectrum stochastization in random inhomogeneous
resonators? The analysis of this issue is one of the goals of
the present study.

In the present paper, the physical nature of the broadening
and the shift of spectral lines of the quasioptical cavity reso-
nator filled with randomly distributed bulk inhomogeneities
has been studied both theoretically and experimentally. We
have elaborated the original spectral theory based on the
mode separation technique. The technique previously devel-
oped in Refs. �11,12� for open waveguide-type systems is
extended here to closed systems, in particular, to a cylindri-
cal cavity resonator. The proposed method applied directly to
the master dynamic equation of the problem enables one to
identify the principal physical mechanism of unexpectedly
large spectral lines broadening with nondissipative intermode
scattering. This type of scattering causes the width of
nearest-neighboring spectral lines to increase more intensely
than the width of solitary spectral lines. Owing to this fact
the quality factor and, respectively, the intensity of the
nearest-neighboring spectral lines tend to decrease sharply,
but these parameters of solitary lines are only slightly
changed. Below we will refer to such a selective change in
the spectral lines as the “spectrum rarefaction.”

In order to verify theoretical predictions, systematic mea-
surements of the quasioptical cavity resonator spectrum were
performed with different realizations of random infill. We
detected the predicted rarefaction effect and proved its origin
to be related to the intermode scattering on non-dissipative
random inhomogeneities. The influence of such inhomogene-
ities can be estimated in two ways. On the one hand, the
broadening of spectral lines is normally perceived as a
negative effect for resonance systems. But, on the other
hand, as far as the lasing properties of the cavity resonator
are concerned the spectrum rarefaction caused by random
inhomogeneities can be viewed as a positive property.

One more aspect of the effect of random inhomogeneities
on the resonator spectrum is related to its stochastization.
Below we carry out statistical analysis of the resonator spec-
trum with a different amount of inhomogeneities. The inter-
frequency �IF� interval distribution in the spectrum of the
resonator with a small number of inhomogeneities appears to
be close to the Poisson distribution. This kind of distribution
is typical for the systems with noncorrelated IF intervals.
Highly chaotic part of the spectrum gradually appears when
the number of inhomogeneities becomes sufficiently large. In
the general case the spectrum is mixed, i.e., it contains both
regular and chaotic parts. We estimate the relationship

between regular and chaotic parts of the spectrum by making
the statistical analysis of the IF intervals as a function of the
number of inhomogeneities in the resonator. We also carried
out the electromagnetic modeling of a semiconductor laser
having random inhomogeneities. To this end, we used the
quasioptical millimeter wave cavity resonator filled with ran-
dom inhomogeneities and inserted the Gunn diode as an ac-
tive element. In this system the conditions for self-excitation
were studied. The generation was found to be an unstable
and multifrequency near the excitation threshold. It can be
explained by frequency jumps in the dense spectrum of the
resonator without inhomogeneities. As the resonator is filled
with randomly distributed inhomogeneities, the multifre-
quency generation disappears. Near the excitation threshold
noise generation was detected whereas far from the threshold
single frequency stable generation was observed.

The possible applications of spectral study of the resona-
tor with random inhomogeneities to nanoelectron systems
are considered in the paper. Such a resonator can be a
model of semiconductor quantum billiard. Based on our
results we suggest the use of such billiards with spectrum
rarefied by random inhomogeneities as an active system of
semiconductor laser.

II. STATISTICAL SPECTRAL THEORY OF THE
RESONATOR WITH RANDOM BULK

INHOMOGENEITIES

A. Statement of the problem

Consider a cylindrical quasioptical cavity resonator of ra-
dius R and height H �see Fig. 1�. The inner volume of the
resonator � is assumed to be filled with the material having
random inhomogeneous permittivity. We are interested in os-
cillations that constitute the transverse-electrical resonance
mode �TE mode� provided that the resonator is empty. The
vertical �z� component of the electrical field of this mode is
equal to zero.

According to Ref. �13�, the electromagnetic field of the
TE mode can be calculated using the magnetic Hertz vector
that has only one non-zero component, namely, z component
�z�r�. We assume that inhomogeneity of the permittivity of
the resonator infill is small. In this case, to define �z�r� in
the inhomogeneous resonator we use the approximate wave
equation

�� + k2��r���z�r� = 0, �1�

where all components of the Hertz vector, except z compo-
nent, are assumed to have a zero value provided that the

FIG. 1. The geometry of the cylindrical quasioptical cavity reso-
nator. S is the resonator side face, � is its volume, H is the height
of the cylinder, R is the radius of its base.
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inhomogeneity is adequately small. In Eq. �1�, � is the three-
dimensional �3D� Laplace operator, ��r�=�0+���r�+ i� is
the complex permittivity whose imaginary part � phenom-
enologically takes into account the ohmic loss in the system;
the function ���r� describes random spacial fluctuations of
the permittivity around its average value �0, k=� /c is the
wave number.

In the case of a classical resonance system, the excitation
by a given point monochromatic source is governed by Eq.
�1� which should be complemented with � term in the right-
hand side. The equation thus obtained coincides in form with
the equation for the Green function of quantum particles
moving in a dissipative medium and being subjected to
an inhomogeneous scalar potential. Therefore the results
of the present formally electromagnetic study can be ex-
tended, at least qualitatively, to solid-state objects such as
randomly inhomogeneous semiconductor quantum billiards
of near-cylindrical shape.

In the presence of some dissipation mechanisms �say, the
ohmic loss in the resonator walls� the equation for the Green
function of Eq. �1� takes the form

�� + k2 − i/�d − V�r��G�r,r�� = ��r − r�� . �2�

Here �d is the dissipative attenuation time whose inverse
value is connected to the imaginary part of function ��r�
taken with minus sign. The potential V�r� in the case of
electromagnetic system is given by V�r�=−k2���r�. Bound-
ary conditions for the solution to Eq. �2� result from the
requirement of vanishing the tangential components of elec-
trical field of the TE mode at the resonator interface. On the
side boundary S, the Neuman condition

� �G�r,r��
�r

�
S

= 0 �3a�

should be met whereas at end surfaces z= ±H /2 the Dirichlet
condition

�G�r,r���z=±H/2 = 0 �3b�

should be satisfied.
To study the oscillation spectrum of the resonator with

random inhomogeneities, the poles of the Green function av-
eraged over realizations of the potential V�r� from Eq. �2�
should be determined. For example, this function can be
found from the Dyson equation. Yet by now the efficient
methods for solving this equation in the case of confined
multidimensional systems do not exist. For this purpose we
apply the original calculation technique which relies on pre-
cise separation of quantization modes in an arbitrary con-
fined system, including the disordered one. The mode sepa-
ration method had been previously developed to solve
transport problems in disordered 2D open systems �11�. Then
it was modified for three dimensional systems of waveguide
geometry in Refs. �12,14,15�. Below we extend this tech-
nique to the systems of closed geometry, in particular, to
cavity resonators.

At the first step let us get on to mode representation of Eq.
�2� using a set of orthonormal basis functions. The whole set
of eigenfunctions of the Laplace operator appears to be the

most suitable for our purpose. For the case of the cylindrical
resonator shown in Fig. 1 these functions can be given to the
form

�r,	� = �r,
;l,n��z,q� , �4�

where r= �r ,
 ,z� is the radius vector in cylindrical coordi-
nates, 	= �l ,n ,q� is the vectorial mode index conjugate to
that vector. Normalized eigenfunctions of the “transverse”
part of the Laplacian, which obey boundary conditions Eq.
�3�, are given by

�r,
;l,n� = Cln/���R�J�n���l
��n��r/R�ein
, �5a�

l = 1,2, . . . , n = 0, ± 1, ± 2, . . . ,

where the coefficient Cln has the form

Cln =
�l

��n��

���l
��n���2 − n2�1/2J�n���l

��n���
. �5b�

The set of coefficients �l
��n�� in Eqs. �5� consists of positive

zeros of the function J�n�� �t� which are numbered by index l in
ascending order. The eigenvalues corresponding to functions
Eq. �5a� are equal to ln=−��l

��n��R�2. Basis functions of the
“longitudinal” part of the Laplacian �2�z2, which meet
boundary conditions �3b�, are given by

�z;q� =� 2

H
sin	
 z

H
+

1

2
��q� ,

q = 1,2, . . . , �6�

the corresponding eigenvalues being equal to ��q /H�2.
In the basis of functions �4�, Eq. �2� takes the form

�k2 − �	
2 − i/�d − V	�G		� − 

��	

U	�G�	� = �		�. �7�

Here, G		�, is the Green function in mode representation, the
parameter

�	
2 = 
�l

��n��

R
�2

+ 
�q

H
�2

�8�

is the unperturbed “energy” of the mode 	 �the eigenvalue of
3D Laplace operator�, functions U	� are mode matrix
elements of the random potential, viz.

U	� = �
�

dr�r;	�V�r��r;�� . �9�

Particular attention should be paid to the fact that the
intramode, i.e. diagonal in mode indices, matrix element
U		�V	 is separated in Eq. �7� from other terms of the sum
where only matrix elements corresponding to intermode scat-
tering are thus kept. It was shown in Ref. �11� that such a
separation of intramode and intermode effective potentials
provides mathematical correctness of the derivation of closed
equations for the diagonal components of Green matrix
�G		�

� and with those components for the entire matrix
integrally.
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B. Separation of the modes

The solution of infinite set of coupled equations �7� is no
less an intricate problem than a direct solution of multidi-
mensional differential equation �2�. The problem would be
resolved in a straightforward fashion on condition that the
resonator modes allow their strict separation. Normally, the
modes are easily separable if the resonator is quite symmetri-
cal, and has no random inhomogeneities. Below, based on
the techniques developed in Refs. �11,12,14�, it will be
shown that in the case of simple-shaped �integrable� unper-
turbed resonator, the modes can be strictly separated even if
there is an arbitrary bulk inhomogeneity. But, in general, the
cost of this separation is the appearance of the effective po-
tentials in equations for each of the modes. These potentials
are known as T matrices in quantum theory of scattering
�16�, their functional structure being much more involved
than that of the initial potential V�r�.

As a starting point for mode separation we introduce un-
perturbed �or trial� mode propagator G�

�V� by omitting in Eq.
�7� all intermode potentials U	�,

G�
�V� = �k2 − ��

2 − i/�d − V��−1. �10�

The term “unperturbed” will be used hereupon with respect
to intermode potentials, intramode ones being taken into
account rigorously.

By substituting 	�=	 in Eq. �7� we obtain a linear non-
uniform connection of intramode propagator G		 with all
intermode Green functions having the particular right-hand
mode index 	,

G		 = G	
�V�
1 + 

��	

U	�G�	� . �11�

Assuming then 	��	 and performing some necessary rela-
beling of mode indices we can reduce Eq. �7� to the form

�G�
�V��−1G�	 − 

����

���	

U��G��	 = U�	G		 �� � 	� . �12�

The latter system of interconnected linear equations can be
readily solved with respect to intermode elements of the
Green matrix. In the operator form the solution is given by

G�	 = P̂��1 − R̂�−1R̂P̂	G		, �13�

where the linear operator R̂= Ĝ�V�Û of intermode scattering is

introduced. This operator acts in the mode subspace M̄	 con-

sisting of the whole set of mode indices but the index 	; P̂	

is the projection operator whose action reduces to the assign-
ment of the value 	 to the nearest mode index of any adja-
cent operator, no matter where it may stand—to the left or to

the right of P̂	. Operators Ĝ�V� and Û are specified on M̄	 by
matrix elements

���Ĝ�V����� = G�
�V�����, �14a�

���Û���� = U���. �14b�

Correspondingly, the matrix elements of the operator R̂ are
given by

���R̂���� = G�
�V�U���. �15�

By substituting intermode propagators in the form �13�
into the relationship �11�, we obtain the following rigorous
expression for intramode propagator G		:

G		 = �k2 − �	
2 − i/�d − V	 − T	�−1. �16�

Here

T	 = P̂	Û�1 − R̂�−1R̂P̂	 �17�

is the portion of the mode 	 eigenenergy which is related to
the intermode scattering.

It should be noted that in order to determine the disor-
dered resonator spectrum it would suffice to find the poles of
solely diagonal elements of the Green matrix. It is precisely
these elements that determine all major analytical properties
of the whole Green function of Eq. �2�. In what follows we
will analyze the cavity resonator spectrum with the use of the
relatively simple statistical model of random potential V�r�.

C. Statistical analysis of the resonator spectrum

We suppose that the potential V�r� has a zero mean value
�V�r�=0�, and binary correlation function

�V�r�V�r��� = DW�r − r�� . �18�

Considering the forthcoming numerical analysis we will take
the function W�r� in the form of Gaussian exponent, viz.
W�r�=exp�−r2 /2rc

2�, where rc stands for the correlation ra-
dius. In the case of electromagnetic resonator the normaliza-
tion constant D in Eq. �18� is given by D=k4�2, where
�2= ���2�r�� is the variance of permittivity fluctuations.

The pair of selected statistical parameters, i.e., the average
random potential and its binary correlation function, are suf-
ficient to make a detailed analysis of the system in study if
function ���r� is the Gaussian-distributed random variable.
Yet these two parameters are also sufficient for doing an
asymptotically correct analysis even in the case where statis-
tics of the fluctuations is markedly non-Gaussian, provided
that the potential V�r� is, in a way, a small one. As is cus-
tomary in condensed matter physics, we will regard the po-
tential to be small and the resulting scattering to be weak if
the scattering rate calculated in Born approximation is small
as compared to the unperturbed quasiparticle energy �k2 in
our particular case�. The smallness of the onefold scattering
probability enables one to regard the potential V�r� with a
parametric accuracy as a Gaussian random process, whatever
its distribution �17�.

Now consider the self-energy operator of the mode 	
which consists, in accord with Eq. �16�, of two terms

�	 = V	 + T	. �19�

The first term in the right-hand side �RHS� of this formula
vanishes when being averaged whereas the second one does
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not. Its average value can be easily calculated under the as-
sumption of weak scattering. The strength of the intermode

scattering is estimated by the norm of the operator R̂ entering
Eq. �17�. Assuming this norm to be small as compared
to unity and keeping only two main terms in the expansion
of the inverse operator in Eq. �17� we find it necessary to
average not the exact operator potential T	 but rather its
relatively compact limiting value

T	 � P̂	ÛĜ�V�ÛP̂	 = 
��	

U	�G�
�V�U�	. �20�

When calculating the quantity �T	� one can neglect, with
a parametric accuracy, the correlation between intramode
and intermode potentials. This permits us to average intra-
mode propagator G�

�V� in Eq. �20� and its envelopes consist-
ing of intermode potentials U	� independently. To average
the function G�

�V� it is worthwhile to present it in the integral
form

G�
�V� = �

0

�

dt exp�− i�k2 − ��
2 − i/�d − V��t� . �21�

Then averaging of the integrand in Eq. �21� by means of the
continual integration with Gaussian functional weight yields

�G�
�V�� =

1

k2�
0

�

dt exp	− i�1 − ��
2/k2 − i/k2�d�t −

t2

2
�2L��rc��

=
1

k2� �

2�2L��rc�
exp	−

�k2 − ��
2 − i/�d�2

2k4�2L��rc�
�

��1 − �	 i�k2 − ��
2 − i/�d�

�2k4�2L��rc�
�� . �22�

Here ��� is the probability integral �18�, L��rc� is the di-
mensionless autocorrelator of intramode potential V�. In the
case of Gaussian correlation function W�r� it is written as

L��rc� =
1

k4 �V�V�� =� �
�

drdr��r,��r,��exp�− �r − r��2/2rc
2�

��r�,��r�,�� =
8

�
Cl�n�

4 �
0

1 �
0

1

dsds�

�exp	−
H2

2rc
2 �s − s��2�sin2��qn�

s�sin2��qn�
s��

� �
0

1 �
0

1

tt�dtdt�J�n��
2 ��l�

�n��t�J�n��
2 ��l�

�n��t�� � d


�exp	−
R2

2rc
2 �t2 + t�2 − 2tt� cos 
�� . �23�

Although expression �22� is formally exact, it is not quite
convenient for making further analysis in view of its bulky
structure. Asymptotical calculations at large and small values
of the probability integral argument permit us to use a far
simpler interpolation expression for �G�

�V��, namely,

�G�
�V�� � �k2 − ��

2 − i/��
*�−1, �24a�

which is close in form to the initial unperturbed Green
function �10�. Here we use the notation

1/��
* = 1/�d + 1/��

��� �24b�

for the effective scattering frequency. The latter includes
both the initial dissipative term 1/�d and the addendum
1/��

���=k2��2/���2L��rc� originating from wave scattering
by random non-dissipative inhomogeneities present in the
bulk of the resonator.

The second term in the RHS of Eq. �24b� is responsible
for the effect analogous to that produced by the first, dissi-
pative term. Specifically, it results in additional widening of
the mode � trial resonance line whose shape is determined by
the modulus of the function �24a�. However, in contrast to
the dissipative widening the effect produced by the term
1/��

��� has basically nothing to do with true dissipation. This
additional width of the resonance originates entirely from
nondissipative �elastic� scattering of excited harmonics by
inhomogeneities randomly placed on the propagation path.
Note that this type of widening survive even in systems
where the energy loss goes to zero, i.e., �d→�.

The widening associated with the inhomogeneity of reso-
nance systems �usually side boundary imperfections� is nor-
mally referred to as the nonuniform widening. In our case,
where the resonator is randomly inhomogeneous in the bulk,
its physical origin can be easily interpreted in terms of the
rays of waves propagating within a closed area. It is well
known that resonator modes can be thought of as being
formed as a result of interference of waves propagating in
opposite directions along closed trajectories. In reasonably
symmetric cavities such trajectories constitute well-resolved
quantized sets. The addition to the cavity of random scatter-
ers, either surface or bulk, should break down the initially
perfect interference picture. In the course of multiple scatter-
ing each of the initially closed wave trajectories in the cavity
decomposes into a quite dense bundle of trajectories, whose
effective width is determined by the particular scattering pa-
rameters. As a result, a set of compactly placed resonances
replaces each of the initially well-resolved peaks thus allow-
ing one to interpret this set as the widening of initial
resonances.

That the origin of the term 1/��
��� in Eq. �24b� is not

related to dissipation but rather to phase correlation of waves
randomly scattered in the resonator. It makes possible to in-
terpret this scattering rate as the dephasing frequency. This
physical concept is conventional in condensed matter physics
�19�. The above analysis suggests that the dephasing of quan-
tum states can equally originate from inelastic �dissipative�
scattering and from scattering caused by static disorder.

To make a further comparison of theoretical results to
experimental data we will further consider the specific
limiting case where the following inequalities are fulfilled:

rc � H � R . �25�

These restrictions enable us to calculate the integrals in Eq.
�23� asymptotically, thus obtaining the following estimate for
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parameter L��rc�: L��rc���rcR�2. The correlator of intermode
potentials in Eq. �20� can be written as

�U	�U�	� = k4�2
 2

�
�2�

0

1 �
0

1

dsds� exp	−
H2�s − s��2

2rc
2 �

�sin��qn	
s�sin��qn	

s��sin��qn�
s�sin��qn�

s��

��0
1�

0

1

tt�dtdt�J�n	���l	

��n	��t�J�n	���l	

��n	��t��J�n��

���l�

��n	��t�J�n����l�

��n	��t�� � � d
d
�

�exp�− i�n	 − n���
 − 
�� −
R2

2rc
2 �t2 + t�2

− 2tt� cos�
 − 
���� . �26�

Asymptotic calculations of the integrals over 
 and 
� yield
the following expression:

�U	�U�	� = k4�2rc

R
A	��rc� , �27�

where factor A	��rc� is given by a rather cumbersome
integral, viz.

A	��rc� =
8

��
Cl	n	

2 Cl�n�

2 �
0

1 �
0

1

dsds� exp	−
H2

2rc
2 �s − s��2�

�sin��qn	
s�sin��qn	

s��sin��qn�
s�sin��qn�

s��

� �
0

1 �
0

1
�tt�dtdt� exp	−

R2

2rc
2 �t − t��2

−
rc

2�n	 − n��2

4R2tt�
�J�n	���l	

��n	��t�J�n	���l	

��n	��t��J�n��

���l�

��n���t�J�n����l�

��n���t�� . �28�

Given the results �24� and �27�, separation of real and
imaginary parts of the average T-matrix, �T	�=�k	

2 + i /�	
�ch�,

leads to the following expressions describing the shift and
the broadening of the 	th resonant level:

�k	
2 = k4�2rc

R

��	

A	��rc�Re�G�
�V�� , �29a�

1

�	
�ch� = k4�2rc

R

��	

A	��rc�Im�G�
�V�� . �29b�

The factor A	��rc�, as one can ascertain from Eq. �28�, is a
real-valued quantity, its absolute value being estimated by
parameter rc /R�1. Although the sign of this factor cannot
be uniquely identified in the general case, since it contains
the dependence on specific indices of modes between which
the scattering is carried out, the numerical analysis shows
that A	��rc��0. This inequality corresponds to the spectral
lines broadening. One can adequately estimate both the shift
and the broadening of the 	-th resonant level by substituting

function �G�
�V�� in the interpolated form �24a�, instead of ex-

act expression �22�, into the right-hand sides of formulas
�29�. The result obtained reduces to

��	
2 = k4�2rc

R

��	

A	��rc�
�	

2 − ��
2

��	
2 − ��

2�2 + �1/��
*�2 , �30a�

1

�	
�ch� = k4�2rc

R

��	

A	��rc�
1��

*

��	
2 − ��

2�2 + �1/��
*�2 . �30b�

The structure of the summands in Eqs. �30� indicates unam-
biguously that both the shift and the broadening of each
given resonance �k2�k	

2 � are mainly provided by its interac-
tions with the adjacent resonances, whose position on the
frequency scale are confined to the region limited by order
equality ��	

2 −��
2 � �1/��

*. In the case where only one reso-
nance level with, say, frequency �̄� proves falls into the
above indicated interval around the 	th resonance �we as-
sume that the condition �rc /R�1 of weak intramode scat-
tering is satisfied�, its contribution to the shift and the width
of the 	th resonance is estimated as

�	 − �	0 =
�2�A	���	0 − �̄��

���	0 + ���2 , �31a�

��	 =
�2�A	�

��	0 + ��
. �31b�

Here �	0 and �	 are the cyclic spectral frequency of empty
resonator and that of the resonator filled with random inho-
mogeneities, respectively, ��	0 and ��	 are the relative
widths of their spectral lines, the parameter ��rc /R. If sev-
eral resonances fall into the indicated vicinity of the 	th
resonance simultaneously, they contribute additively to both
the level position and and the width.

From the above theory it follows that filling of a quasi-
optical cavity resonator with randomly distributed inhomo-
geneities results both in the random shift of its spectral lines
and an increase of their line widths. This type of widening is
not related to dissipation in the cavity and may be interpreted
as nonuniform widening. Here the theory can give only
qualitative predictions for experiment. This situation is quite
similar to the wave scattering by randomly rough surfaces
�2�. At the same time the problem of oscillations in the qua-
sioptical cavity resonator filled with bulk random inhomoge-
neities differs essentially from that of wave scattering by a
randomly rough surface.

The point is that oscillations in the cavity resonator are
formed due to multiple transmissions of waves �with multi-
plicity of the order of Q� through its random infill. Bearing
this in mind one might expect that with the condition
rc�R the characteristics of spectral lines are effectively self-
averaged �17�. In this case the agreement between theory and
experiment may be achieved at small number of measure-
ments or even for one particular realization of the random
system. The confirmation or the denial of this assumption
may be achieved by comparing theoretical predictions to the
experimental data.
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III. EXPERIMENT AND DISCUSSION

The main goal of our experiment is to verify the theoret-
ical results for shifting and broadening of spectral lines
caused by inhomogeneities and the possible resonator spec-
trum “rarefaction.” Yet another goal is as follows. In the
paper �7� we have detected strong spectrum stochastization
caused by inhomogeneities such as anisotropic sapphire par-
ticles having the dimensions of order of an operating wave-
length, which are placed into the cavity resonator. The spec-
trum is mixed due to both a regular and a chaotic parts of
the spectrum. In contrast to Ref. �7�, in the present paper we
examine the influence on the resonator spectrum of relatively
small isotropic inhomogeneities. Such inhomogeneities can
be made from styrofoam particles with an average permittiv-
ity value close to unity and with a small dielectric loss angle.
Thus, the following question arises:Can the spectrum
chaotization be made possible in this case?

A. Experiment technique

We look into the influence of inhomogeneities on the cav-
ity resonator spectrum at a frequency range of 32–37 GHz.
A quasioptical cylinder millimeter wave resonator random
filled with styrofoam particles �Fig. 2� is chosen for the
experiment. The styrofoam particles have the real part of
permittivity of about unity and with small dielectric loss
�=1.04+ i10−4.

To study the influence of dielectric particles on the reso-
nator spectrum it is necessary to provide a high quality factor
for the oscillations in the inhomogeneity-free resonator. For
this purpose we excited the TE mode in the resonator. The
magnetic field vector of this mode is directed along the reso-
nator z axis, and microwave currents do not cross the inter-
face between the flat resonator face and cylinder surface.
Owing to this the empty resonator has a high quality factor
up to 2�104. To excite the selected mode we used a wave-
guide diffraction antenna. It represents the circular hole with
a diameter of 2 mm in a thin diaphragm 0.1 mm thick, which
closes the input waveguide. The diaphragm surface is flush
mounted with the side-cut resonator cylinder surface. The
identical antenna is used to receive the oscillations on the
opposite side of the cylinder surface.

The resonator spectrum was detected using “on pass”
regime over 32–37 GHz frequency range by a wide-band
standing wave ratio meter. The measurement process
was computerized. A signal from the measurement device
goes into computer using analog-digital conversion. The

further signal processing �determining the spectral line inten-
sity, its quality factor, and frequency� was performed by ap-
plying the special software package. This makes it possible
to handle the measurement data for a huge number of real-
izations of the random inhomogeneities in a short period of
time. Owing to this, the the accuracy of frequency and qual-
ity factor measurement do not exceed 0.1 and 1 %, respec-
tively. The styrofoam particles used as inhomogeneities are
of approximately 2–3 mm size. Their space distribution
among them was arbitrary for each realization. The spectral
characteristics were measured depending on the number of
these inhomogeneities.

B. Statistical analysis of the resonator spectrum

As the number of inhomogeneities increases, the spectrum
of the quasioptical resonator assumes a stochastic nature that
is visualized in the distribution of IF intervals. In order to
define the relation between regular and random spectral com-
ponents, the comparison of IF interval distribution obtained
experimentally to different theoretical distributions based on
a priori data on a statistical process is commonly used. Spe-
cifically, to find the distribution of the IF interval probability
we use the Brody function PB�s� given by

PB�s� = As� exp�− Bs1+�� , �32�

where s= ��n−�n−1����n�, �n is the spectral line frequency,
���n� is the spectral density, i.e., the superposition of regular
and random motion density, � is the measure of stochastic
motion, constants A and B are defined from the standardiza-
tion condition A= �1+��B, B=�1+��2+���1+��−1, ��z� is
the gamma function. At �→0 the IF intervals in the spec-
trum are not correlated and can be described by the Poisson
distribution, and at �→1 we have the Wigner distribution, in
which the repulsion effect of spectral lines exists. In other
words, the probability of closest-to-zero IF interval is equal
to zero.

If the measure of the spectrum stochastization is relatively
small and the distribution of IF intervals is close to the Pois-
sonian one we can use the Berry-Robnik distribution PBR�s�
�20� expressed as

PBR�s� = �2e−�s erfc	��

2
�1 − ��s� + 	�

2
�1 − ��2s + 2��

��1 − ��e−�s−��/4��1 − ��2s2
, �33�

where erfc�x�= 2
��

�x
� exp�−t2�dt, � is the relative phase vol-

ume taken up by a regular trajectory in a mixed system. The
limit �→1 corresponds to the regular system; �→0 corre-
sponds to a completely chaotic one. The value 1−� is
relative phase volume occupied by chaotic motion.

The experimental data indicate that in the empty resonator
the IF intervals distribution is sufficiently close to the Berry-
Robnik distribution with �=1 �the Poisson distribution
P�s��exp�−s�� �Fig. 8�a��. By increasing the number of in-
homogeneities �styrofoam particles� the function P�s� has a
maximum value at small s. The presence of the maximum in
P�s� is indicative of the spectral line repulsion effect. The

FIG. 2. The quasioptical cylinder cavity millimeter wave reso-
nator filled with inhomogeneities, 1 and 6 are input/output
waveguides, 2 and 5 are the holes coupling the resonator with
waveguides, 3 is the resonator body, 4 are the styrofoam particles,
D is the resonator diameter, H is its height; D=130 mm,
H=14 mm.
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random component thus increases. We have found out that
with a resonator being completely filled with styrofoam par-
ticles we have �=0.4 �Fig. 3�b��.

As evident from Fig. 4 the function P�s� has the maxi-
mum at small s which is not described by the Berry-Robnik
dependence �21�. This maximum can be explained by chaos-
assisted tunneling �CAT� effect �22� in the resonator filled
with random inhomogeneities. The IF distribution function
proposed in �22� describes the observed distribution for
parameter �=0.4, which corresponds to classical dynamics,
and for parameter �=0.1 describing the tunneling between
different modes.

We calculated the spectral rigidity for the resonator filled
with inhomogeneities. The spectral rigidity �3�L� is an inte-
gral characteristic of the degree of spectral lines ordering for
frequency distances that are much longer than the IF interval.
It is given by �23�

�3�x,L� =
1

L
min
A,B

�
x

x+L

�n��� − A� − B�2d� , �34�

where L is the interval where the function �3�x ,L� is deter-
mined. The function n��� is constructed as follows �23�. For
a sequence of frequencies �n normalized to unit density
��n=�n−1+Sn� we introduce a staircase function n��� equal
to the number of frequencies lying below �.

The function n��� has a staircase form with average unit
tilt. The function �3�x ,L� is defined as the minimum of qua-
dratic deviation of n��� from the straight line in the interval
�x ,x+L�. The meaning of spectral rigidity �34� averaged over
x, ��3�x ,L� , �x, depends on L only and is denoted as �3�L�.

The curve �3�L� for the resonator with random inhomo-
geneities is shown in Fig. 4. This curve marked as �2� is
placed between the spectral rigidity for the Poisson distribu-
tion (curve 1, ��3�L�=L /15�) and curve 3 which corresponds
to the spectral rigidity for the Gaussian orthogonal ensemble
�GOE�, �3�L�=1/�2 ln L−0.00687 �23�. The spectral rigid-
ity related to GOE is observed when modeling the quantum
chaos in unstable microwave cavity resonators similar to
Sinai and Bunimovich billiards �24�.

IV. SHIFTING AND BROADENING OF SPECTRAL LINES:
EFFECT OF SPECTRUM “RAREFACTION”

To compare the theory and the experiment we calculate
the spectrum of TE modes in the quasioptical cylinder cavity
millimeter wave resonator filled with random dielectric inho-
mogeneities using our theoretical results. When calculating
the resonator spectrum the resonator parameters were taken
from the experiment. The spectrum was found by solving the
excitation problem with a point external dipole. Figures
5�a�–5�d� shows the influence of random bulk inhomogene-
ities on the spectrum at different values of parameter � cal-
culated with Eqs. �30�. As an example we selected the
spectrum at the 36–37 GHz frequency interval.

It is shown that the spectrum has considerably changed in
the presence of bulk dielectric inhomogeneities. The magni-
tude of spectral lines shifting and broadening depends on the
level of filling the resonator by inhomogeneities. The solitary
spectral lines retain their high quality factor and their broad-
ening is small enough �for example, the spectral line with
n=15, Figs. 5�a�–5�d�� even in the presence of inhomogene-
ities. At the same time the shift and the broadening of
nearest-neighbor lines are significant. As one can see in Figs.
5�e� and 5�f�, experimental results are in good agreement
with our numerical data. Figures 5�g�–5�i� shows the
theoretical amplitude-frequency dependence of the resonator
spectrum constructed as a frequency dependence of Green
function modulus at different values of parameter �. These
dependences suggest that the number of lines with a high
quality factor substantially decreases if the number of inho-
mogeneities is becoming larger �Figs. 5�h� and 5�i��. The
reduction of the number of high quality lines can be ex-
plained as “rarefaction” of the resonator spectrum. The “rar-
efaction” is caused by dissimilar scattering conditions for
different modes. So, as the number of inhomogeneities in-
creases, the adjacent resonances tend to overlap and the qual-
ity factor of combined resonances becomes smaller �see, for
example, spectral lines near 36.8 GHz�.

Now examine the mechanism for spectral lines shift and
broadening, which is dependent upon both the frequency dis-
tance between nearest-neighbor spectral lines and closeness
of their azimuthal indexes. The interaction between the
nearest-neighbor spectral lines becomes much stronger if
these lines overlap and their azimuthal indexes are close. For
example, the peaks near 36.8 GHz with n	=2,45,0 ,27,21
�36.7524,36.7775,36.7815,36.795,36.804 GHz� have both
a short frequency distance and close azimuthal indexes �n	

=2,0� if the resonator is empty �Figs. 5�g� and 5�j��. If the
resonator is filled with inhomogeneities these peaks overlap

FIG. 3. The nearest-neighbor spacing distribution, P�s�. �a� is
for the empty resonator spectrum. The solid line is for the Berry-
Robnik distribution at �→1 or the Brody distribution at �→0. �b�
is for the spectrum of the resonator entirely filled with styrofoam
particles. Curve 1 is for the Brody distribution at �=0.1; curve 2 is
for the Berry-Robnik distribution at �=0.4; curve 3 is for the
Podolskiy-Narimanov distribution at �=0.4 and �=0.1 �29�.
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and merge into almost one resonance with a rather low qual-
ity factor �Figs. 5�h�, 5�i�, and 5�k��. It should be added that
the peak with n	=2 has the largest broadening and the nega-
tive relative frequency shift in the frequency band �Figs.
5�a�–5�f�� under consideration. This is due to the strong in-
teraction between the nearest-neighbor peaks and the peaks
that have n	=0 and n	=4. This claim can be proved as fol-
lows. Figure 6 shows the value of some terms from Eqs.
�30a� and �30b�. As one can see, the largest values corre-
spond to the resonances with n	=0 and n	=4 for the depen-
dence for n	=2. It is necessary to note that for the solitary
peak with n	=15 all elements of the sum in Eq. �30� are
small, therefore, their relative shift and broadening are small
as well. The x dependence for the peak with n	=45, which is
not solitary and has some nearest-neighbor peaks, demon-
strates the behavior similar to that of the peak with n	=15
because these peaks do not have azimuthal indexes close to
n	=45. The amplitude of spectral lines is reduced �Figs.
5�h�, 5�i�, and 5�k�� and shift and broadening become de-
pended upon both the frequency distance between nearest-
neighbor spectral lines and on the closeness of their
azimuthal indexes.

The theoretical and experimental spectrum of the empty
resonator is rather dense and consists of 84 narrow spectral
lines in the range of 32–37 GHz �Fig. 7�. Each line can be
identified according to mode indexes if the number of inho-
mogeneities is fairly small. We found out that oscillations

with high quality factor �Q�, of order of 104 and higher, have
small azimuthal indexes �n�1� and high radial indexes
�l�1�. For the oscillation mode �n�1, l=1� the field is con-
centrated inside the resonator side-cut �whispering-gallery
oscillations �9��, Q is nearly 2�103. The spectrum of the
resonator with inhomogeneities differs essentially from the
spectrum of empty resonator. By increasing the number of
inhomogeneities the spectral lines are becoming wider, and
Q, correspondingly, decreases. The intensity of broaden lines
decreases too. The spectrum keeps only few lines with suf-
ficiently high intensity and the Q value. For such lines the
value of Q is close to the Q factor of spectral lines of the
empty resonator. So, the number of lines with high intensities
and with Q�104 is equal to 52 in the empty resonator �Fig.

FIG. 4. The spectral rigidity for the resonator filled with styro-
foam particles �curve 2�. The straight line is for the spectral rigidity
of the Poisson distribution �curve 1�, curve 3 is for GOE.

FIG. 5. Comparison of theoretical and experimental results. The dependence of relative spectral lines shift P=��	
2 /�	

2 =2�f	 / f	 and
their relative broadening W=�d /�	

�ch�=Qd /Q	 on frequency f: �a�–�d� is the theory, and �e�, �f� is the experiment. The theoretical amplitude-
frequency dependence of the empty resonator spectrum �g� and the spectrum of the resonator with inhomogeneities �h�,�i�. The permittivity
dispersion values of inhomogeneities are �=0.02 �a�,�b�,�h� and �=0.05 �c�,�d�,�i�; rc=0.3 cm. The experimental amplitude-frequency
dependence of the empty resonator spectrum �j� and the spectrum of the resonator with inhomogeneities �k�. The amplitude is normalized by
maximal amplitude of resonances for the empty resonator in the considered wave range. The resonances are marked by numbers that are their
azimuthal indexes. Dotted lines indicate spectral lines with the same azimuthal indexes.
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7�a��. At the resonator is filled by styrofoam particles the
number of such lines is 10 �Fig. 7�b��, and at the resonator
filled with pressed styrofoam particles, the number of lines is
3 �Fig. 7�c��.

Consider three highest peaks in Fig. 7�c�. These peaks do
not have so many nearest-neighbor peaks, as one can see in
the insert in Fig. 7�c� with somewhat higher-resolution data.
Their peak amplitudes are high as compared to other peaks
because of the spectrum “rarefaction.” In the inset of Fig.
7�c�, there are many nearest-neighbor peaks with small am-
plitudes which are close to the highest peak due to the inter-
action between nearest resonances.

In the spectrum of inhomogeneous resonator there is a
small number of lines with high Q value along with numer-
ous low-intensity lines. This is equivalent to the spectrum

“rarefaction” �Fig. 7�. It has to be noted that the presence of
high Q lines indicates that the broadening results, mainly,
from the inhomogeneity of the resonator infill and is not
specified by additional dissipation caused by small dielectric
loss in the styrofoam. Along with the broadening of spectral
lines they experience a frequency shift. This shift has both
regular and random components �Fig. 8�.

The regular shift occurs towards the low frequency range
because of an increase in average dielectric permittivity of
inhomogeneous medium in the resonator. It has an average
value of 150 MHz for the resonator entirely filled with
styrofoam particles.

It is important to note that if the distance between reso-
nances is small enough they can either come closer or depart
from each other because of the influence of inhomogeneities.
Their Q factor is changed significantly �Figs. 9 and 10�: one
of them may increase whereas the other decreases.

Both the spectral lines broadening and their shift agree
with described above theory and can be interpreted in the
terms of intermode scattering. We can give simple physical
understanding of the effect of broadening and shift of spec-
tral lines in the quasioptical cylinder resonator filled with
inhomogeneities. This interpretation is based on the ray treat-
ment of resonant oscillations. Each of a resonant frequency
corresponds to a periodical trajectory which optical length
equals to integer number of wavelengths. In the empty
cylinder resonator due to symmetry the length of such a tra-

FIG. 6. The values of some terms in Eq. �30� for the resonances
in the frequency band 38–37 GHz; n	=15, 2, 45 and different val-
ues of n�; �a� Sk is for the sum in Eq. �30a�, �b� St is for the sum in
Eq. �30b�. The resonances are marked by their azimuthal indexes.
The current numbers of resonances are put along the x axis.

FIG. 7. The spectrum of the empty resonator �84 lines� �a�; the
resonator filled with styrofoam particles �77 lines� �b�; the resonator
filled with pressed styrofoam particles �57 lines� �c�. The amplitude
was normalized to the maximal amplitude value for the empty
resonator.

FIG. 8. The dependence of the frequency shift �f = �fempty

− f inhom� / fempty on f for the resonator filled with inhomogeneities.
The dotted line is the value of the regular component of the shift.

FIG. 9. The relative Q-factor deviation �Q= �Qempty

−Qinhom� /Qempty depends upon frequency f for the resonator filled
with inhomogeneities. For the major part of resonances the relative
Q-factor deviation is more than zero, i.e., their Q is less than for the
empty resonator. The relative Q-factor deviation is less than zero
for several nearest-neighbor resonances that have overlapped spec-
tral lines �for the empty resonator� and split into separate reso-
nances with inhomogeneities, i.e., the spectral line repulsion takes
place here �see Fig. 8�.

GANAPOLSKII, EREMENKO, AND TARASOV PHYSICAL REVIEW E 75, 026212 �2007�

026212-10



jectory does not depend on its initial �final� point on the
resonator side face. The given resonant frequency corre-
sponds to a set of trajectories with the same optical length.
The widths of spectral lines caused by ohmic loss in the
resonator is the same for different trajectories for the given
frequency. If
the resonator is filled with small inhomogeneities optical
length for various trajectories becomes slightly differ. Corre-
spondingly, the resonant frequencies become also slightly
different. Owing to small inhomogeneities the presence
of a set of trajectories with close optical length leads to
merging of spectral lines into one nonuniformly broadened
spectral line. Broadening of this line consists of two compo-
nents: one is the dissipative component due to ohmic loss in
the resonator and the other one is nondissipative component
due to merging of close spectral lines caused by random
inhomogeneities.

Such physical understanding corresponds to experimental
situation. If the resonator is excited by means of a point
dipole with a wide directional diagram a set of different reso-
nant trajectories are appeared simultaneously according to
the ray treatment. These closed-loop trajectories constitute a
statistical assemble by which the self-averaging is realized.
Thus, the spectral line observed in the experiment is the
result of the self-averaging process.

V. ACTIVE RESONATOR WITH RANDOM
INHOMOGENEITIES

We also studied an active quasioptical resonator with ran-
dom inhomogeneities. In comparison with the considered
above passive resonator the active one is a self-excited os-
cillation system where the presence of random inhomogene-
ities affects on the excitation of resonator oscillations. For
that we used the same resonator as mentioned above �Fig. 2�
with a point Gunn diode inside. The microwave electrical
field for TE mode was directed along a diode’s axis. The
diode dc power supply was implemented through a filter as a
quarter-wave microwave isolator. Owing to that the spurious
microwave radiation was prevented.

The quasioptical resonator with the Gunn diode is an ac-
tive oscillator with distributed parameters. Near the threshold

of excitation in such an oscillator with the empty resonator
unstable multifrequency generation was detected �Fig.
11�a��. We can explain such generation by frequency jumps
between adjacent spectral lines with high quality factor. If
the excitation threshold was highly exceeded monofrequency
generation occurs �Fig. 11�b��, as a result of frequency
competition. The active oscillator selects “itself” the only
frequency to provide maximal regeneration factor �25�.

The random inhomogeneities lead to effective rarefaction
of the resonator spectrum. The number of adjacent spectral
lines with high quality factor is reduced, and, as a result,
multifrequency generation disappears. At small exceeding of
the generation threshold the noise generation appears �Fig.
11�c�� in the resonator with inhomogeneities. At great ex-
ceeding of the generation threshold the stable monofre-
quency is observed likewise in �Fig. 11�b��. Owing to inho-
mogeneities monofrequency generation possesses greater
frequency stability, and a number of generating frequencies
is reduced in the range of diode negative resistance. Figure

FIG. 10. The adjacent resonances with azimuthal and radial in-
dexes n=34, l=3; n=4, l=15; in the empty resonator �a� and in the
resonator filled by inhomogeneities �b�. The normalization of the
spectral lines amplitude was made on the maximal spectral line
amplitude for the empty resonator.

FIG. 11. Oscillogram of the 36 GHz generation obtained by a
millimeter wave spectrum analyzer; �a� and �b� are for the empty
resonator. Multifrequency generation near the generation threshold
�a� and monofrequency generation much far from the generation
threshold �b�; �c� is chaotic generation near the generation threshold
for the resonator filled with inhomogeneities. Monofrequency stable
generation in the resonator with inhomogeneities has the similar
view as in �b� much far from the generation threshold.

INFLUENCE OF RANDOM BULK INHOMOGENEITIES ON… PHYSICAL REVIEW E 75, 026212 �2007�

026212-11



12 shows generating frequencies for the empty resonator and
for the resonator with random bulk inhomogeneities.

VI. POSSIBLE APPLICATION TO NANOELECTRON
SYSTEMS

Recently the great emphasis is the study of a new type of
nanoelectron systems so-called zero-dimensional ones. The
charge carrier motion in these systems has space restriction
in all three dimensions. The peculiar example of zero-
dimensional system is a quantum dot �QD�. QD is a semi-
conductor area by the size of order of 10 nm with electron
�hole� conductivity and restricted by potential barrier of
outer area. Owing to finite charge carrier motion the energy
spectrum in QD is discrete and the number of spectral levels
due to small QD size is relatively few.

For the QD design an elegant method of QD array imple-
mentation has been designed. This method is based on the
self-organization effect in strained double GaAs heterostruc-
tures �26–28�. The usage of QD array as an active medium
permits to design lasers with high performance �20,29,30�.
However, the self-organization process of QD array forming
is difficult to manage. The random inhomogeneities that usu-
ally exist in heterostructure essentially affect this process.
They lead to inhomogeneous broadening of spectral lines
�31� and, correspondingly, to degradation of laser radiation
quality.

The QD design method based on the self-organization ef-
fect is, in fact, an alternative one to the electron lithography.
The level of electron lithography development does not per-
mit to implement the ordered array of approximately the
same QDs with enough small dispersion of their sizes. We
propose another way to design a semiconductor laser system.
This way presupposes the use of the same regular micro-
scopic ordered array areas that can be implemented by li-
thography as an active laser medium. This proposal is based
on the following. At present the technology of GaAs monoc-
rystal with super high mobility and big length of phase co-
herence of charge carriers �that achieves 10 	m and more-
over� is well developed. That is way, the system of
microscopic regular areas with potential barrier on the
boundary of each of them made from such materials can be
implemented. Because of big length of phase coherence,

carriers will take part in ballistic motion and reflect back
from boundaries. The motion of charge carriers is similar to
dynamics of billiard systems. Since this motion is described
by a Schrödinger equation such a billiard system can be
characterized as a quantum billiard �QB�.

Due to finite motion of charge carrier, the electron spec-
trum of QB is discrete. At the same time it is quite dense,
because of the QB size is much bigger than the wavelength
of quasiparticles. This fact makes complicate the QB usage
as an active system for the semiconductor laser, because
the dense spectrum decreases the frequency stability of laser
radiation. The frequency jumps appear easily at a small
deviation of control parameters in the laser resonator
with dense frequency spectrum. As a result, there is a prob-
lem of “rarefaction” of the spectrum: Can the dense QB
spectrum be done much sparser without changing QB
geometrical parameters?

Thus, based on our results we state that the use of the
quasioptical cavity resonator filled with inhomogeneities
gives the possibility of essential spectrum rarefaction and we
can give the positive answer the question above. The qua-
sioptical cavity resonator has dense and discrete frequency
spectrum. The Maxwell equation describing electromagnetic
oscillations in such a resonator coincides with corresponding
scalar Schrödinger equation at definite conditions. All that
gives an opportunity to use the quasioptical resonators as
model objects to study spectral properties of QB. Similar
modeling was done earlier for the study of the phenomena
that is relevant to quantum chaos �23,24,32,33�.

The inhomogeneous quasioptical cavity millimeter
wave resonator �passive and active� can serve as a model of
semiconductor quantum billiard. Based on our results we
suggest to use QB with spectrum rarefied by random
inhomogeneities as an active system of semiconductor laser.

VII. CONCLUSION

The statistical spectral theory of the quasioptical cavity
resonator filled with random dielectric inhomogeneities was
developed. We showed that the presence of inhomogeneities
leads to the broadening and shift of spectral lines. It is found
that the physical nature of broadening and shift of spectral
lines is relevant to intermode scattering. The scattering effect
for the given spectral line essentially depends on a frequency
distance between of it and adjacent ones and is sharply de-
creased for bigger distances. Under the influence of random
inhomogeneities the original spectrum modification occurs
that can be interpreted as spectrum rarefaction. The spectrum
is rarefied because of solitary spectral lines are not practi-
cally subjected to the influence of inhomogeneities. The
quality factor of such lines and, correspondingly, their inten-
sities stay high at the resonator excitation. The intensity of
adjacent lines broadened under the influence of inhomogene-
ities is essentially reduced. Owing to that, at the great num-
ber of inhomogeneities the resonator spectrum is rarefied,
i.e., few solitary high quality factor spectral lines prevail in
the spectrum.

Theoretical prediction of the broadening and shift of
spectral lines and spectrum “rarefaction” are subject to

FIG. 12. The generating frequencies f depending on the number
of inhomogeneities M. The empty resonator �M =0�, the resonator
quarter filled with inhomogeneities �M =1�, the resonator half filled
with inhomogeneities �M =2�, the resonator entirely filled with
inhomogeneities �M =3�.

GANAPOLSKII, EREMENKO, AND TARASOV PHYSICAL REVIEW E 75, 026212 �2007�

026212-12



experimental check. For that purpose we experimentally
studied at 8-millimeter wave range the spectrum of the qua-
sioptical cavity resonator filled with random small-scattered
bulk inhomogeneities. These inhomogeneities were styro-
foam particles with smaller size than the operating wave-
length. We have found out that such inhomogeneities lead to
broadening and shift of spectral lines. As experiment showed
that the maximum of their influence was only on nearest-
neighbor spectral lines. The solitary lines, according to our
theory, were subjected to this influence in much smaller de-
gree. We detected the effect of stochastic spectrum “rarefac-
tion.” It was proved that main mechanism of broadening and
shift of spectral lines is relevant to inhomogeneities
intermode scattering.

In addition we studied the chaotic properties of oscilla-
tions in our resonator. It is found out that the empty resonator
has IF intervals distribution similar to the Poisson distribu-
tion that is typical to the spectrum with noncorrelated
IF intervals. Even at small number of inhomogeneities

the resonator spectrum has random part that increases in
proportion to the number of inhomogeneities in the resona-
tor. At that IF intervals distribution in random inhomoge-
neous resonator is described by the Brody and Berry-Robnik
distributions of IF intervals.

We obtained the results concerning the influence of
bulk inhomogeneities on the process of generation in a
self-excitation system. The self-excitation system was
a quasi-optical millimeter wave cavity resonator containing
inhomogeneities with an active element as a Gunn diode.
We detected that inhomogeneities lead to the essential
“rarefaction” of the spectrum and create conditions for
monochromatic stable generation in self-excitation system.
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